Abstract

Atomic force microscope (AFM) single molecule force spectroscopy has been used to investigate the friction coefficient of individual polymers adsorbed onto a solid support. The polymer chains were covalently attached to an AFM tip and were allowed to adsorb on a mica surface. Different polymers (ssDNA, polyallylamine) were chosen to cover a range of friction coefficients. During the experiment, the AFM tip was retracted in- and off-plane which results, depending on the chosen conditions, in a desorption of the polymer from the surface, a sliding across the surface, or a combination of both. Thus, the obtained force-extension spectra reveal detailed information on the mobility of a polymer chain on a surface under experimentally accessible conditions. This study demonstrates that absorbed polymers with comparable desorption forces may exhibit drastically different in plane mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.