Abstract

Conventional joint replacements consist of a polished metallic or ceramic component articulating against a layer of polyethylene. Although the friction in the contact between these articulating surfaces is low, polyethylene wear is produced as a result of a boundary/mixed lubrication regime. Wear debris is generated by direct asperity contact, abrasion, adhesion and fatigue, and has been shown to cause adverse tissue reactions which can lead to joint failure. The introduction of soft compliant materials, similar in stiffness to articular cartilage, has shown that with cyclic loading and relative motion between the articulating surfaces typical of normal walking, a fluid film can be maintained through combined entraining and squeeze-film actions, and hence wear can be minimized. For 95 per cent of the time, however, we are not walking but standing still or moving slowly. A pendulum simulator has been used in the present study to investigate the effect of adverse tribological conditions which may lead to fluid film breakdown, such as severe cyclic loading, particularly in the swing phase, reduced sliding velocity, reduced stroke length and start-up after a period of constant loading. Friction of a model composite cushion knee bearing, manufactured from a graded modulus (20-1000 MPa) layer of polyurethane, sliding against a polished metal cylinder has been measured for various lubricants and the results have been analysed using a Stribeck assessment. Severe cyclic loading, decreased sliding velocity and decreased stroke length have been found to limit the degree of fluid entrainment previously allowed during the swing phase of normal walking, thus allowing breakdown of fluid films and elevated levels of friction and surface damage. Soft layer joint replacements must therefore be designed to operate with thick elastohydrodynamic fluid films to provide some degree of protection when tribological conditions become severe, or alternatively incorporate alternative boundary or mixed lubrication mechanisms. This study quantifies a potential limitation of the cushion bearing concept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call