Abstract

Studies of hip arthroplasty have dealt mainly with total endoprosthesis, while tribology measurement values of hemi-endoprosthetic implants are rare. The small amount of experimental tribological data concerning materials of hemi-endoprosthetic implants in the form of pendulum trials, animal experiments, in vivo measurements on human hip joints and pin on disc studies report friction coefficients between 0.014 and 0.57; the friction coefficients measured in fresh human cadaver hip joints were determined between 0.001 and 0.08. The HEPFlEx-hip simulator was constructed to test the friction coefficients of unipolar femur head hemi-endoprostheses made of metal or ceramic against fresh cadaveric acetabula. Its plane of movement is uniaxial with a flexion-extension movement of +30/-18 degrees . The force is produced pneumatically dynamic with amounts of 2.5 kN. Newborn calf serum serves as a lubricant. We mounted 20 fresh porcine acetabula and 10 fresh human cadaver acetabula in the HEPFlEx-hip simulator and compared the two unipolar femur head hemi-endoprostheses (metal vs. ceramic). The mean friction coefficients against porcine acetabula were micro=0.017-0.082 for ceramic and micro=0.020-0.101 for metal; against human cadaver acetabula micro=0.017-0.083 for ceramic and micro=0.019-0.118 for metal. The frictional coefficient deltas (metal-ceramic) values of all measurements were Deltamicro=0.004 for porcine acetabula and Deltamicro=0.001 for cadaver acetabula. Box-plots graphics document significantly lower frictional coefficients of the ceramics. The lower frictional coefficients of ceramic compared to metal against fresh cadaveric acetabula may have a clinical impact on the process of the protrusion of the corresponding femoral head through the acetabulum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call