Abstract

Over the past two decades, the manipulation of nanoparticles has attracted increasing attention. This process provides essential information about tribology, which is of great significance for the exploration of the origin of friction. However, the motion state of the nanoparticles during this process must first be determined. Furthermore, since the nanoparticles could slide, roll, or spin when manipulated by the probe of the atomic force microscope, it was difficult to distinguish whether the force measured in the experiments denoted sliding or rolling friction. In this Letter, considerable manipulation and friction measurement experiments were performed, while the theoretical rolling and sliding friction were calculated using the Double-Hertz model. Furthermore, by comparing the theoretical calculations and experimental results, the motion state of the nanoparticle could be determined. Additionally, it was found that the critical rolling distance, which is essential for calculating rolling friction, decreases as the particle size increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.