Abstract

Stick—slip-induced vibration in drilling has a detrimental effect on the drilling system and may lead to the failure of the drill string. This study is a further development of a friction-driven vibro-impact system which was investigated previously. The system used the stick—slip properties to generate a vibratory motion of a hammer that collides with the bit. The previous study focused on the influence of the friction on the response of the system without impacts. This paper investigates the full dynamic response of the model including friction and impact. Numerical bifurcation analysis of the system is undertaken to establish various motions and dynamical changes. This study focuses on the system performance outside the stable interval identified in the earlier investigation. The response of the system is illustrated along with the phase portraits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.