Abstract

This study investigates the friction drilling process, a nontraditional hole-making technique, for cast metals. In friction drilling, a rotating conical tool is applied to penetrate work-material and create a bushing in a single step without generating chip. The cast aluminum and magnesium alloys, two materials studied, are brittle compared to the ductile metal workpiece material used in previous friction drilling research. The technical challenge is to generate a cylindrical shaped bushing without significant radial fracture or petal formation. Two ideas of pre-heating the workpiece and high speed friction drilling are proposed. Effects of workpiece temperature, spindle speed, and feed rate on experimentally measured thrust force, torque, and bushing shape were analyzed. The thrust force and torque decreased and the bushing shape was improved with increased workpiece temperature. Varying spindle speed shows mixed results in bushing formation of two different work-materials. The energy, average power, and peak power required for friction drilling were calculated and analyzed to demonstrate quantitatively the benefits of workpiece pre-heating and high spindle speed in friction drilling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.