Abstract

As a core component for efficient variable speed transmission and energy saving, wet clutches are widely used in the transmission systems of energy-saving and new energy vehicles. However, with an increase in the service mileage of the wet clutch, the friction coefficient undergoes alterations. This leads to a deterioration of the control accuracy of the clutch transmission torque, which ultimately has a negative impact on the dynamic characteristics and driving safety of the entire vehicle. In order to understand the service behavior of the friction coefficient in a wet clutch, wet clutches with different service mileages were investigated experimentally and theoretically. The results show that as the service mileage increased, the hydrodynamic lubrication phase was extended. Analyses of the three-dimensional profile of the friction plate and the theoretical simulation of the friction revealed that the edge ridges of the friction pads were flattened. This increased the clutch engagement force when the asperities on the separator and friction plates came into contact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call