Abstract

The wide use of epoxy composites as bearing materials in electronic appliances necessitates studying their frictional behaviour under the influence of magnetic field. Experiments were carried out to investigate the effect of magnetic field on the friction coefficient displayed by the scratch of epoxy composites filled by iron, copper and aluminium particles at different concentrations. It was observed that, for epoxy filled by the metallic fillers (iron, copper and aluminium), under the effect of the magnetic field, friction coefficient showed relative decrease then significantly increased with further increase of the intensity of the magnetic field. Besides, friction coefficient increased with increasing the content of the metallic fillers due to the decrease of the strength of the epoxy matrix. The values of friction coefficient displayed by epoxy filled by copper were lower than those observed for epoxy filled by iron. Filling epoxy by aluminium displayed lower friction coefficient than that observed for epoxy composites filled by iron and copper. This can be attributed to the charging of aluminium by positive charge when slid against steel. The resultant charge on the sliding surfaces was lower than that generated when epoxy was filled by iron and copper. In that condition, the adhesion of epoxy composites would be relatively weaker leading to the decrease of friction coefficient.

Highlights

  • In many engineering applications, the mechanical drives perform under the effect of magnetic field

  • It was found that application of magnetic field on the contact area affected friction coefficient displayed by polyamide sliding against steel at dry and oil-lubricated conditions

  • The influence of magnetic field on the friction coefficient displayed by the sliding of steel pin on aluminium, polyamide and steel discs lubricated by paraffin oil and dispersed by different lubricant additives such as zinc dialkyldithiophosphates, molybdenum disulphide, heteropolar organic based additive, graphite, polytetrafluroethylene and polymethyl methacrylate, detergent additive was investigated [4]-[6]

Read more

Summary

Introduction

The mechanical drives perform under the effect of magnetic field. (2015) Friction Coefficient Displayed by the Scratch of Epoxy Composites Filled by Metallic Particles under the Influence of Magnetic Field. It was found that application of magnetic field on the contact area affected friction coefficient displayed by polyamide sliding against steel at dry and oil-lubricated conditions.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.