Abstract

Atomic-scale friction measured for a single asperity sliding on 2D materials depend on the direction of scanning relative to the material's crystal lattice. Here, nanoscale friction anisotropy of wrinkle-free bulk and monolayer MoS2 is characterized using atomic force microscopy and molecular dynamics simulations. Both techniques show 180° periodicity (2-fold symmetry) of atomic-lattice stick-slip friction vs. the tip's scanning direction with respect to the MoS2 surface. The 60° periodicity (6-fold symmetry) expected from the MoS2 surface's symmetry is only recovered in simulations where the sample is rotated, as opposed to the scanning direction changed. All observations are explained by the potential energy landscape of the tip-sample contact, in contrast with nanoscale topographic wrinkles that have been proposed previously as the source of anisotropy. These results demonstrate the importance of the tip-sample contact quality in determining the potential energy landscape and, in turn, friction at the nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.