Abstract

Silicon is an attractive material for the construction of read/write head sliders in magnetic recording applications from the viewpoints of ease of miniaturization and low fabrication cost. In the present investigation we have studied the friction and wear behavior of single-crystal, polycrystalline, ion-implanted, thermally oxidized (wet and dry), and plasma-enhanced chemical vapor deposition (PECVD) oxide-coated silicon pins while sliding against lubricated and unlubricated thin-film disks. For comparison, tests have also been conducted with Al2O3–TiC and Mn–Zn ferrite pins which are currently used as slider materials. With single-crystal silicon the rise in the coefficient of friction with sliding cycles is faster compared to Al2O3–TiC and Mn–Zn ferrite pins. In each case, the rise in friction is associated with the burnishing of the disk surface and transfer of amorphous carbon and lubricant (in the case of lubricated disks) from the disk to the pin. Thermally oxidized (under dry oxygen conditions) single-crystal silicon and PECVD oxide-coated single-crystal silicon exhibit excellent tribological characteristics while sliding against lubricated disks, and we believe this is attributable to the chemical passivity of the oxide coating. In dry nitrogen, the coefficient of friction for single-crystal silicon sliding against lubricated disks behaves differently than in air, decreasing from an initial value of 0.2 to less than 0.05 within 5000 cycles of sliding. We believe that silicon/thin-film disk interface friction and wear is governed by the uniformity and tenacity of the amorphous carbon transfer film and oxygen-enhanced fracture of silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call