Abstract

AbstractThe use of fluorinated mix catalyst (titanium fluoride: TiF3 + iron fluoride: FeF3) with polytetrafluoroethylene: PTFE in engine oil is increasingly a strategy to improve fuel economy and component durability to simultaneously provide low friction and excellent wear protection. The influence of these additives shows promising results during load bearing capacity testing and long‐term durability experiments. This paper addresses the enhancement of friction and wear performances of 0.1% and 0.05% phosphorus plain zinc dialkyl dithiophosphate (ZDDP) oil and fully formulated engine oil when heated to 100°C for specific time under thermal and tribological conditions for moderate pressure loading (1.9 GPa Hertzian pressure or 180 N) which simulate the cold start of a car under 700 rpm rotational speed or the valve trains loading where most of the ZDDP are applied.Tests were performed in a ball on cylinder tribometer under boundary lubrication conditions. Surface analyses were carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results showed that the anti‐wear additives (2 wt. % PTFE + 0.5 wt. % FeF3 + .5 wt. % TiF3) provided excellent wear protection to 0.1% phosphorus plain and fully formulated oil when cylinder is immersed in the desired lubricant and heated for a predetermined time but performed poorly in 0.05% phosphorus fully formulated oil under the same conditions. The transform of anti‐wear coated material to the worn surfaces, which was a function of the anti‐wear performance of additives, was shown to have an influence on friction performance. The wear reducing effect, which was observed in fluorinated additives tribological tests, indicated a positive contribution and good tribofilm formations. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.