Abstract

An investigation was conducted to determine the friction and wear characteristics of hot-pressed silicon nitride. Sliding produced wear debris and a damaged surface. The physical and crystallographic morphology of surfaces was compared with that of diamond ground surfaces. Wear tests were done with pin-on-disk apparatus at a load of 10N with various sliding speeds to 780 mm/s, and in four different environments which included in dry nitrogen, in air at humidities of 50 percent RH and 90 percent RH, and in distilled water. The results of the wear experiments indicated that residual α-silicon nitride was transformed into β-silicon nitride. Adsorbed water appeared to enhance plastic flow of the surface and reduced both the wear rate and friction. A second investigation was conducted to correlate the coefficient of friction with the fracture toughness of silicon nitride, silicon carbide, aluminum oxide and zirconium oxide. The friction experiments were done in reciprocating sliding, using spherical diamonds. Two tip radii, 0.005 mm and 0.1 mm were used over a range of load of 0.1 to 3N and a speed of 0.17 mm/s. The coefficient of friction was found to be inversely correlated with fracture toughness of all four ceramics in several conditions. Frictional anisotropy was also observed in the hot-pressed silicon nitride.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.