Abstract

Adhesion energy between two surfaces containing intermetallic compounds is low, and adhesive wear is expected to be inhibited in such materials. Accordingly, the effects of intermetallic compounds have to be taken into account in the material design stage as a measure for improving wear resistance. Wear tests for specimens containing intermetallic compound phases, such as FeAl, TiAl and NiAl, were carried out under dry and lubricated conditions. The composite specimens used for the tests were fabricated by using a centrifugal casting method. In dry sliding of iron-aluminide composite materials, adhesion was mitigated and specific wear rate decreased with increases in the area fraction up to 60 percent. The titanium aluminide composite material showed the same trend of wear as that of the iron-aluminide composite materials. Under lubrication, specific wear rates increased due to the surface containing brittle intermetallic compounds. For the nickel aluminide composite material, the adhesion-inhibiting effect was remarkable. For particle reinforced metal matrix composites, friction coefficients depend on the protrusion height of alumina particles from the surface. The coefficient of friction for the surface with particles protruding was higher than that for the surface with embedded particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.