Abstract

Functional renormalization group (FRG) is an exact method for taking into account the effect of quantum fluctuations in the effective action of the system. The FRG method applied to effective theories of nuclear matter yields equation of state which incorporates quantum fluctuations of the fields. Using the local potential approximation (LPA) the equation of state for Waleckatype models of nuclear matter under extreme conditions could be determined. These models can be tested by solving the corresponding Tolman – Oppenheimer – Volkov (TOV) equations and investigating the properties (mass and radius) of the corresponding compact star models. Here, we present the first steps on this way, we obtained a Maxwell construction within the FRG-based framework using a Walecka-type Lagrangian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.