Abstract

A fretting wear model of a rough surface that conforms to the actual situation is established to accurately reveal the wear mechanism of the connection structure. In the ABAQUS software, the UMESHMOTION subroutine and the energy dissipation model are used to simulate the fretting wear of double rough surfaces. The new model, a single rough surface model, and a smooth model are compared to analyze their differences. In addition, the influence of surface roughness, material, and friction coefficient on the fretting wear of rough surfaces is systematically explored through finite element simulation. The results show that the model's reliability has been verified through Hertz's theory and experiments. The stress and wear of the contact surface are more realistically reflected by the double roughness model. Besides, with the increase of surface roughness and material rigidity and the decrease of friction coefficient, the wear of the double rough surface model becomes more severe. The research work provides a theoretical basis for the design and performance prediction of the connection structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.