Abstract
In pressurized water reactor (PWR), fretting wear is one of the main causes of fuel assembly failure. Moreover, the operation condition of cladding is complex and harsh. A unique fretting damage test equipment was developed and tested to simulate the fretting damage evolution process of cladding in the PWR environment. It can simulate the fretting wear experiment of PWR under different temperatures (maximum temperature is 350 ℃), displacement amplitude, vibration frequency, and normal force. The fretting wear behavior of Zr-4 alloy under different temperature environments was tested. In addition, the evolution of wear scar morphology, profile, and wear volume was studied using an optical microscope (OM), scanning electron microscopy (SEM), and a 3D white light interferometer. Results show that higher water temperature evidently decreased the cladding wear volume, the wear mechanism of Zr-4 cladding changed from abrasive wear to adhesive wear and the formation of an oxide layer on the wear scar reduced the wear volume and maximum wear depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.