Abstract

The fretting wear behavior of tin plated copper alloy contacts and its influence on the contact resistance are addressed in this paper. Based on the change in the area of contact zone as well as the wear depth as a function of fretting cycles, a model was proposed to explain the observed low and stable contact resistance. The extent of wear of tin coating and the formation of wear debris as a function of fretting cycles were assessed by scanning electron microscopy (SEM). Energy dispersive X-ray line scanning (EDX), X-ray mapping, and EDX spot analysis were employed to characterize the nature of changes that occur at the contact zone. The study reveals that the fretted area increases linearly up to 8000 cycles due to the continuous removal of the tin coating and attains saturation when the fretting path length reaches a maximum. The observed low and stable contact resistance observed up to 8000 cycles is due to the common area of contact which provides an electrically conducting area. Surface analysis by SEM, EDX, and X-ray elemental mapping elucidate the nature of changes that occurred at the contact zone. Based on the change in contact resistance as a function of fretting cycles, the fretting wear and fretting corrosion dominant regimes are proposed. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behavior of tin plated contacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call