Abstract

Lubricated fretting tests in water and paraffin oil were performed with a monolithic TiB2, a TiB2-based cermet with 16vol.% Ni3(Al,Ti) binder, a sialon–TiB2 (60/40) composite and a ZrO2–TiB2 (70/30) composite against ball bearing grade steel. Based on the measured friction and wear data, the ranking of the investigated fretting couples was evaluated. Furthermore, the morphological investigations of the worn surfaces and transfer layers are carried out and the wear mechanisms for the investigated friction couples are elucidated. While fretting in water, experiments revealed that tribochemical reactions, coupled with mild abrasion, played a major role in the wear behavior of the studied material combinations. ZrO2–TiB2 (70/30)/steel wear couple has been found to have the highest fretting wear resistance among the different tribocouples under water lubrication. Under oil lubrication, extensive cracking of the paraffin oil at the fretting contacts, caused by tribodegradation, leads to the deposition of a carbon-rich lubricating layer, which significantly reduced friction and wear of all the investigated tribosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.