Abstract

In a recent work, it has been shown that it is possible to achieve a better combination of compressive strength, flexural strength and toughness properties in calcium phosphate (CaP) composites containing 20 and 30 wt% mullite (3Al(2)O(3).2SiO(2)). In view of their potential application as load bearing implants, the present work reports the friction and wear properties of the newly developed composites against zirconia under dry ambient as well as in simulated body fluid (SBF) containing bovine serum albumin (BSA) protein. For comparison, experiments were also conducted on monolithic hydroxyapatite (HAp, Ca(10)(PO(4))(6)(OH)(2)) and mullite under identical conditions. Under the investigated fretting conditions, the mullite-containing composites exhibited higher coefficient of friction (COF) of 0.4-0.6, compared to pure HAp (COF approximately 0.25-0.3). Although the wear resistance of the composites containing 20 or 30 wt% mullite was better in dry conditions, higher wear rate was measured in SBF conditions. The difference in tribological properties has been analyzed in reference to the difference in phase assemblage and mechanical properties. A comparison with some competing biomaterials reveals good potential of the investigated CaP-mullite composites for application as wear resistant implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.