Abstract

A small oscillatory movement between two contacting surfaces is termed as fretting and on many occasions it acts as the crack initiation site leading to catastrophic failure of the overall structure. The occurrence of fretting is observed in many engineering structures such as shaft flanges, gas turbines, steel ropes etc. An experimental facility, which can simulate the fretting fatigue in many engineering applications, is the primary requirement of the research program. A laboratory fretting fatigue test facility capable of varying many influencing parameters of fretting fatigue such as slip amplitude, frequency, contact pressure, etc is designed and developed. Preliminary investigations on plain and fretting fatigue behaviour of AISI 1015 structural steel are reported in this paper. A strength reduction factor of about 1.30 was obtained due to fretting for the test material under the present experimental conditions. Influence of contact load on fretting was also studied. Increasing fretting contact load decreased the fatigue life in the range investigated. Failure analysis showed typical stage I oblique crack growth followed by stage II straight crack perpendicular to the fretting zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.