Abstract

The fretting corrosion at the head-neck interface of artificial hip joints is an important reason for the failure of prostheses. The Ti6Al4V alloy-zirconia-toughened alumina (ZTA) ceramic combination has been widely used to make the head and neck of artificial hip joints. In this study, its fretting corrosion behavior in simulated body fluid was studied by electrochemical monitoring, surface morphology characterization, and chemical composition analysis. A running condition fretting map (RCFM) of load and displacement was established, including three regimes, namely partial slip regime (PSR), mixed fretting regime (MFR), and gross slip regime (GSR). The friction dissipation energy increased gradually from the PSR to MFR and GSR. In the PSR, the damage mechanisms were slight abrasive wear and tribocorrosion at the edge of contact area, as well as extremely slight adhesive wear at the center. In the MFR, the damage mechanisms were mainly adhesive wear, abrasive wear, and corrosive wear. In the GSR, the damage mechanism was serious abrasive wear, fatigue wear, and corrosive wear combined with slight adhesive wear. Finally, an ion-concentration map was created, displaying the material-loss transition of different displacements and loads. The material loss increased with the increased displacement, and increased first and then decreased with the increased load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.