Abstract

In this work we presented novel strategy for increasing the performance of popular fluorescent probes on the basis of rhodamine-lactam platform. This strategy is based on the incorporation of probe molecules into the light-harvesting nanoparticles to pump modulated optical signal by Förster resonant energy transfer. Using the commercially available Cu2+ probe as a reference chemical, we have developed an efficient approach to significantly improve its sensing performance. Within obtained nanoparticles coumarin-30 nanoantenna absorbs excitation light and pumps incorporated sensing molecules providing bright fluorescence to a small number of emitters, while changing the probe-analyte equilibrium from liquid-liquid to solid-liquid significantly increased the apparent association constant, which together provided a ∼100-fold decrease in the detection limit. The developed nanoprobe allows highly sensitive detection of Cu2+ ions in aqueous media without organic co-solvents usually required for dissolution of the probe, and demonstrate compatibility with inexpensive fluorometers and the ability to detect low concentrations with the naked eye.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call