Abstract

Vitamin A as a powerful antioxidant plays an important role in human body functions including bone remodeling regulation, healthy immune system and cell growth reproduction. An accurate determination of vitamin A is taken into consideration because of its importance for human health. In this paper, we reported a fluorescence resonance energy transfer (FRET) probe, MPS-capped ZnS QDs, for sensitive and selective detection of vitamin A. The colloidal MPS-capped ZnS QDs were prepared from Zinc acetate and sodium sulfide by employing 3-mercaptopropyltrimethoxysilane (MPS) molecules as the stabilizer or capping agent at the pH condition of 10. The synthesized MPS-capped ZnS QDs were characterized by means of FT-IR, UV-Vis, DLS, and TEM techniques. The sensing behavior of MPS-capped ZnS QDs for selective and sensitive detection of vitamin A, vitamin B2, vitamin B6, vitamin E, vitamin K, vitamin H, vitamin D3 and vitamin C was investigated using fluorescence spectroscopy. The detection mechanism involves photoinduced charge transfer from the surface of ZnS QDs to Vitamin resulting in the fluorescence quenching of ZnS QDs followed by nonradiative fluorescence resonance energy transfer. An excellent selectivity was observed for vitamin A versus other tested species. A linear relationship was observed between the fluorescence intensity of MPS-capped ZnS QDs and the concentration of vitamin A in the range of 3.33-36.66μM with detection limit of 1.062μM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call