Abstract

We describe the development of a non-electrophoresis PCR-based assay for allele discrimination at a disease resistance locus. The assay is based on the emission of light by fluorescence resonance energy transfer (FRET) upon annealing of two hybridization probes. The analysis of melting curve profiles of the probes and templates allowed the detection of single nucleotide polymorphisms. The assay was applied to the detection of alleles at the cor locus in lettuce (Lactuca sativa) that confers recessive resistance to corky root disease. Probes and primers for the assay were designed after the characterization of a single nucleotide polymorphism between alleles of PCR products amplified using a linked marker. That polymorphism was validated in a collection of lettuce varieties representing different genetic backgrounds. The FRET hybridization probes approach provided fast and accurate genotyping of breeding material directly in a one-tube reaction. The absence of electrophoresis makes this approach suitable for applications that require automation and high-throughput genotyping analyses such as marker-assisted selection programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.