Abstract
Calixarene-functionalized luminescent nanoparticles were successfully fabricated for the FRET-based selective and sensitive detection of the organophosphorus pesticide glyphosate (GP). p-Tert-butylcalix[4]arene was grafted on the surface of [Ru(bpy)3 ]2+ incorporated SiNps to produce self-assembled nanosensors (RSC). FRET was switched on in the presence of GP by means of energy transfer due to binding with p-tert-butylcalix[4]arene grafted on the surface of the RSC. The FRET efficiency of the GP-RSC system was increased gradually with the addition of GP. The FRET efficiency was evaluated as 87.69 % and a high binding affinity was established by the binding constant value, 1.16×107 M-1 , using a Langmuir binding isotherm plot. The estimated limit of detection (LOD) was 7.91×10-7 M, which was lower than the Environmental Protection Agency (EPA) recommendation. The probe also effectively responds to real sample analysis. The sensitivity and selectivity was realized due to the efficient FRET towards the fluorescence properties of the [Ru(bpy)3 ]2+ complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.