Abstract
Fluorescence correlation spectroscopy (FCS) and Förster resonance energy transfer (FRET) are both scientific concepts that are frequently discussed in the context of single-molecule fluorescence techniques. In contrast to FCS, FRET is strictly not a technique but a photophysical phenomenon, which can be employed in combination with any method that probes fluorescence intensity or lifetime. Thus, the combination of FCS with FRET is possible and—although these concepts are quite often treated as alternative approaches, particularly for the analysis of biological systems—also quite attractive. However, under certain circumstances, for example, for applications of fluorescence cross-correlation spectroscopy, FRET effects can cause significant complications for quantitative data analysis, and careful calibration has to be carried out to avoid FRET-induced artifacts. This can be most elegantly done if alternating excitation schemes such as PIE (pulsed interleaved excitation) are employed. In this minireview, we discuss the potential and the caveats of FCS combined with FRET and give a short record on successful and promising applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.