Abstract

Deterministic illumination diffractive-diffusers have nonperiodic short and medium-scale topography. Because of the deterministic locations of vertical sidewalls at the phase transition boundaries, over-coating diffractive diffusers with thin-film antireflection layers perturbs their function, resulting in performance deviations and nonuniformities. To mitigate these effects, we added antireflection random nanostructures on the surface of three different classes of fused-silica multiphase diffractive diffusers, using reactive-ion plasma etching. The diffusers were measured before and after the random nanostructures addition, using a polarized-laser scatterometer with a dynamic range of nine orders of magnitude. The bidirectional scatter distribution function was measured over the entire equatorial plane of incidence, to analyze the directionality of scattered light and the impact of the antireflective nanostructure presence on the optical performance of the diffusers. The overall reflectivity suppression was measured across the illumination patterns directions, as well as, across the entire 180-deg angle-sweep. The designed deterministic illumination patterns and their contrast were unaffected by the presence of the random antireflective structures, whereas Fresnel reflectivity was reduced by an order of magnitude on average.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.