Abstract

Recent investigations of silicone‐on‐glass (SoG) Fresnel lens concentrator optics have shown a dependence of the optical efficiency and module performance on lens temperature. It was shown that the temperature dependence is dominated by a reduction of the refractive index with increasing temperature and a deformation of the lens structure due to thermal expansion of the lens material. We succeeded in modeling these effects on a computer by simulating thermal deformations of the lens structure using the finite element method (FEM) and analyzing the resulting deformed structure using ray tracing simulations. In former work, we were able to demonstrate a very good match to high precision optical measurements of Fresnel lenses at varying temperatures. The detailed insight we gained through our measurements and computer simulations was used to develop and manufacture a lens with improved optical performance at the temperature interval which is relevant for operation within a concentrator photovoltaic module. For these optimized SoG lenses, detailed computer simulations predict a significant increase in optical efficiency when compared to non‐optimized lenses. High precision measurements of the optical efficiency allowed us to verify our expectations and compare experimental results of a Fresnel lens optimized for operation under varying ambient temperatures to results obtained for non‐optimized Fresnel lenses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.