Abstract
The propagation of magnetostatic forward volume waves excited by a constricted coplanar waveguide is studied via inductive spectroscopy techniques. A series of devices consisting of pairs of sub-micrometer size antennae is used to perform a discrete mapping of the spin wave amplitude in the plane of a 30-nm thin YIG film. We found that the spin wave propagation remains well focused in a beam shape of width comparable to the constriction length and that the amplitude within the constriction displays oscillations, two features which are explained in terms of near-field Fresnel diffraction theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.