Abstract

An actual keyhole is captured by a high-speed camera during deep penetration laser welding of aluminum alloy 6016. With the help of spectrograph, plasma spectra are acquired, and then after Abel transformation, electron temperature is calculated. Through Lorenz nonlinear fitting, the FWHM of Stark broadening lines is obtained to compute electron density. To know more about the mechanism of deep penetration laser welding, both the effect of Fresnel absorption and inverse bremsstrahlung absorption of plasma on the laser power distribution is considered. Results indicate that electron temperature is very unstable in the keyhole which has a declining tendency in the radius direction, electron density increases in the depth direction while it does not change too much along radius. Laser intensity absorbed on the keyhole wall through Fresnel absorption is hardly uniform and distributes mainly on the front wall and the bottom of keyhole wall, and inverse bremsstrahlung absorption of keyhole plasma plays a dominant role in absorbing laser power compared with Fresnel absorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.