Abstract
Methane is an important greenhouse gas, and contributes substantially to global warming. Although freshwater environments are known to release methane into the atmosphere, estimates of the amount of methane emitted by freshwater lakes vary from 8 to 73 Tg per year. Methane emissions are difficult to predict in part because the source of the methane can vary: it is the end product of the energy-conserving pathway in methanogenic archaea, which predominantly live in anoxic sediments or waters, but have also been identified in some oxic freshwater environments. More recently, methane release from small organic molecules has been observed in oxic marine environments. Here we show that demethylation of methylphosphonate may also contribute to methane release from lakes, and that phosphate can repress this activity. Since lakes are typically phosphorus-limited, some methane release in these environments may be a byproduct of phosphorus metabolism, rather than carbon or energy metabolism. Methane emissions from lakes are currently predicted using primary production, eutrophication status, extent of anoxia, and the shape and size of the lake; to improve prediction of methane emissions, phosphorus availability and sources may also need to be included in these models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.