Abstract

This paper presents the design of a new event-triggered Kalman consensus filter (ET-KCF) algorithm for use over a wireless sensor network (WSN). This algorithm is based on information freshness, which is calculated as the age of information (AoI) of the sampled data. The proposed algorithm integrates the traditional event-triggered mechanism, information freshness calculation method, and Kalman consensus filter (KCF) algorithm to estimate the concentrations of pollutants in the aircraft more efficiently. The proposed method also considers the influence of data packet loss and the aircraft’s loss of communication path over the WSN, and presents an AoI-freshness-based threshold selection method for the ET-KCF algorithm, which compares the packet AoI to the minimum average AoI of the system. This method can obviously reduce the energy consumption because the transmission of expired information is reduced. Finally, the convergence of the algorithm is proved using the Lyapunov stability theory and matrix theory. Simulation results show that this algorithm has better fault tolerance compared to the existing KCF and lower power consumption than other ET-KCFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.