Abstract

AbstractNano-silica (NS) may counteract the drawbacks of fly ash (FA), such as delayed setting and low early strength, by accelerating hydration and providing higher early strength in concrete. In this study, concrete mixtures having 4 different FA replacement ratios (0%, 20%, 35%, and 50% by vol.) and 3 different NS dosages (0%, 1.7%, and 3.4% by vol.) were prepared. Effect of NS on the rheology, setting times and temperature evolution during the setting period, microstructure, compressive strength, and modulus of elasticity (MOE) of concrete at constant slump (20 ± 1 cm) were investigated. Plasticizers influenced the rheological and setting properties of concrete designed at constant consistency. In terms of these properties, although there have been cases where the use of NS has shown controversy results compared to the common knowledge in literature, this situation has been associated with the demand for the plasticizers consumed to obtain constant slump. In general, NS accelerated the setting times of concrete, however, it could not completely tolerate the delay caused by FA. According to 7-day mechanical test results, using 3.4% NS almost fully recovered the 20% strength loss caused by 20% FA replacement. Even if compressive strength close to NS-free REF mixture could not be achieved with high volume FA replacement (50%), at 7 days, MOE results, comparable to NS-free REF concrete, could be achieved using 3.4% NS. At later ages, although the compressive strength varied over a wide range, i.e., from 30 to 75 MPa, MOE of FA concrete have become almost independent of the strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.