Abstract

In retrospective and prospective observational studies, fresh frozen plasma (FFP) has been associated with a survival benefit in massively transfused trauma patients. A dry plasma product, such as spray-dried plasma (SDP), offers logistical advantages over FFP. Recent studies on FFP have demonstrated that FFP modulates systemic vascular stability and inflammation. The effect of SDP on these measures has not been previously examined. This study compares SDP with FFP using in vitro assays of endothelial function and in vivo assays of lung injury using a mouse model of hemorrhagic shock (HS) and trauma. FFP, SDP, and lactated Ringer's (LR) solution were compared in vitro using assays of endothelial cell (EC) permeability, cytokine production and content, gene expression, as well as tight and adherens junction stability. All resuscitation products were also compared in a murine model of HS. Mean arterial pressures and physiologic measures were assessed. Pulmonary vascular permeability was measured using tagged dextran. Lung tissues were stained for CD68, VE-cadherin, and occludin. Treatment of ECs with FFP and SDP, but not LR, preserved the integrity of EC monolayers in vitro and resulted in similar EC gene expression patterns and cytokine/growth factor production. FFP and SDP also reduced HS-induced pulmonary vascular permeability in vivo to the same extent. In mice with HS, mean arterial pressures and base excess were corrected by both FFP and SDP to levels observed in sham-treated mice. Treatment after HS with FFP and SDP but not LR solution reduce alveolar wall thickening, leukocyte infiltration, and the breakdown of EC junctions, as measured by staining for VE-cadherin, and occludin. Both FFP and SDP similarly modulate pulmonary vascular integrity, permeability, and inflammation in vitro and in vivo in a murine model of HS and trauma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.