Abstract

Efficient collection, freezing, reliable archiving of sperm, and re-derivation of mutant mice are essential components for large-scale mutagenesis programs in the mouse. Induced mutations (i.e. transgenes, targeted mutations, chemically induced mutations) in mice may cause inherited or temporary sterility, increase abnormal sperm values, or decrease fertility. One purpose of this study was to compare the effect(s) on fresh and frozen–thawed sperm quality, spermatozoa DNA integrity, unassisted in vitro fertility (IVF) rate, in vitro embryo development rate to blastocysts, and live-born offspring rates in non-ENU (control) animals and the F1-generation of N-ethyl- N-nitrosourea (ENU)-treated male mice (765 mg/kg C57BL6/J or 600 mg/kg 129S1/SvImJ total dose). The second purpose was to determine the effect(s) of parental oocyte donor strain on in vitro fertilization, in vitro embryo development to blastocysts, and live-born offspring rates using sperm and unassisted IVF to re-derive animals from non-ENU control and ENU mice. Sperm assessment parameters included progressive motility, concentration, plasma membrane integrity, membrane function integrity, acrosome integrity, and DNA integrity. There were no significant differences in fresh sperm assessment parameters, DNA integrity, unassisted in vitro fertility rate, in vitro embryo development rate to blastocysts, and live-born offspring rates between non-ENU and C3B6F1/J or B6129S1F1/J ENU mice. In addition, there were no significant differences in frozen–thawed sperm assessment parameters and DNA integrity rates for non-ENU control and ENU C3B6F1/J or B6129SF1/J mice. In vitro fertilization and in vitro embryo development to blastocysts were effected from strain genetic variability ( P < 0.05). However, the cryopreservation process caused an increase of DNA fragmentation in non-ENU control and ENU C3B6F1/J or B6129S1F1/J hybrid mice compared to fresh control sperm ( P < 0.01). Unlike the combinations of hybrid sperm and hybrid oocyte, increasing frozen–thawed sperm DNA fragmentation decreased the embryo development rate to blastocyst compared to fresh sperm when C57BL6, C3H, or 129S inbred mice were used as oocyte donors ( P < 0.05).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.