Abstract
The prediction interval has been increasingly used in meta-analyses as a useful measure for assessing the magnitude of treatment effect and between-studies heterogeneity. In calculations of the prediction interval, although the Higgins-Thompson-Spiegelhalter method is used most often in practice, it might not have adequate coverage probability for the true treatment effect of a future study under realistic situations. An effective alternative candidate is the Bayesian prediction interval, which has also been widely used in general prediction problems. However, these prediction intervals are constructed based on the Bayesian philosophy, and their frequentist validities are only justified by large-sample approximations even if noninformative priors are adopted. There has been no certain evidence that evaluated their frequentist performances under realistic situations of meta-analyses. In this study, we conducted extensive simulation studies to assess the frequentist coverage performances of Bayesian prediction intervals with 11 noninformative prior distributions under general meta-analysis settings. Through these simulation studies, we found that frequentist coverage performances strongly depended on what prior distributions were adopted. In addition, when the number of studies was smaller than 10, there were no prior distributions that retained accurate frequentist coverage properties. We also illustrated these methods via applications to two real meta-analysis datasets. The resultant prediction intervals also differed according to the adopted prior distributions. Inaccurate prediction intervals may provide invalid evidence and misleading conclusions. Thus, if frequentist accuracy is required, Bayesian prediction intervals should be used cautiously in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.