Abstract

BackgroundThe small GTPase Arf6 and its downstream effector AMAP1 (also called ASAP1/DDEF1) constitute a signaling pathway promoting cell invasion, in which AMAP1 interacts with several different proteins, including PRKD2, EPB41L5, paxillin, and cortactin. Components of this pathway are often overexpressed in human breast cancer cells, to be correlated with poor prognosis of the patients, whereas overexpression of the Arf6 pathway did not correlate with the four main molecular classes of human breast tumors. In this pathway, receptor tyrosine kinases, including EGFR and Her2, activate Arf6 via GEP100. MMTV-PyMT mice and MMTV-Neu mice are well-established models of human breast cancer, and exhibit the early dissemination and the lung metastasis, by utilizing protein tyrosine phosphorylation for oncogenesis. PyMT-tumors and Neu-tumors are known to have overlapping gene expression profiles, which primarily correspond to the luminal B-type of human mammary tumors, although they differ in the time necessary for tumor onset and metastasis. Given the common usage of protein tyrosine phosphorylation, as well as the frequent use of these animal models for studying breast cancer at the molecular level, we here investigated whether mammary tumors in these mouse models utilize the Arf6-based pathway for invasion.MethodsExpression levels of Arf6, AMAP1, and GEP100 were analyzed in PyMT-tumors and Neu-tumors by western blotting. Expression of Arf6 and AMAP1 was also analyzed by immunohistochemistry. The involvement of AMAP1 in invasion, and the possible correlation of its high expression levels with cancer mesenchymal properties were also investigated.ResultsWe found that PyMT-tumors, but not Neu-tumors, frequently overexpress AMAP1 and use it for invasion, whereas both types of tumors expressed Arf6 and GEP100 at different levels. High levels of the AMAP1 expression among PyMT-tumor cells were frequently correlated with loss of the epithelial marker CK8 and also with expression of the mesenchymal marker vimentin both at the primary sites and at sites of the lung metastases.ConclusionsPyMT-tumors appear to frequently utilize the Arf6-based invasive machinery, whereas Neu-tumors do not. Our results suggest that MMTV-PyMT mice, rather than MMTV-Neu mice, are useful to study the Arf6-based mammary tumor malignancies, as a representative model of human breast cancer.

Highlights

  • The small GTPase Arf6 and its downstream effector AMAP1 constitute a signaling pathway promoting cell invasion, in which AMAP1 interacts with several different proteins, including PRKD2, EPB41L5, paxillin, and cortactin

  • Overexpression of AMAP1 in polyomavirus middle T-antigen (PyMT)-tumors We have demonstrated the frequent involvement of the Arf6-based pathway in breast cancer malignancy, as earlier mentioned

  • We have reported previously that the AMAP1 protein levels do not correlate with its mRNA levels among different human breast cancer cells [13]

Read more

Summary

Introduction

The small GTPase Arf and its downstream effector AMAP1 ( called ASAP1/DDEF1) constitute a signaling pathway promoting cell invasion, in which AMAP1 interacts with several different proteins, including PRKD2, EPB41L5, paxillin, and cortactin Components of this pathway are often overexpressed in human breast cancer cells, to be correlated with poor prognosis of the patients, whereas overexpression of the Arf pathway did not correlate with the four main molecular classes of human breast tumors. As recurrence is the major cause of death from breast cancer, basic mechanisms that underlie recurrence, i.e., tumor early dissemination, invasion, and metastasis, as well as resistance to therapies have been extensively studied using genetically manipulated animal models Such animal models include mice expressing polyomavirus middle T-antigen (PyMT), which activates Src-family tyrosine kinases [3, 4], or expressing Neu/ ErbB2 receptor tyrosine kinase under the control of the mouse mammary tumor virus (MMTV) promoter (i.e., MMTV-PyMT mice and MMTV-Neu mice, respectively). PyMT-tumor cells demonstrate much higher invasiveness than Neu-tumor cells in vitro

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.