Abstract

Mounting evidence indicated that human mesenchymal stem cells (hMSCs) are responsive not only to biochemical but also to physical cues, such as substrate topography and stiffness. To simulate the dynamic structures of extracellular environments of the marrow in vivo, we designed a novel surrogate substrate for marrow derived hMSCs based on physically cross-linked hydrogels whose elasticity can be adopted dynamically by chemical stimuli. Under frequent mechanical stress, hMSCs grown on our hydrogel substrates maintain the expression of STRO-1 over 20 d, irrespective of the substrate elasticity. On exposure to the corresponding induction media, these cultured hMSCs can undergo adipogenesis and osteogenesis without requiring cell transfer onto other substrates. Moreover, we demonstrated that our surrogate substrate suppresses the proliferation of hMSCs by up to 90% without any loss of multiple lineage potential by changing the substrate elasticity every 2nd days. Such “dynamic in vitro niche” can be used not only for a better understanding of the role of dynamic mechanical stresses on the fate of hMSCs but also for the synchronized differentiation of adult stem cells to a specific lineage.

Highlights

  • To date, various extracellular matrix (ECM) models based on chemically cross-linked hydrogels have been developed in order to understand how such a positive feedback in mechano-sensing regulates the fate of stem and progenitor cells

  • By avoiding covalent coupling of adhesion motifs[39,40], we minimize the adhesion-induced interference with the fate of Human mesenchymal stem cells (hMSCs) and address the following important questions: Can PDPA-PMPC-PDPA gels sustain the multiple lineage potential of hMSCs? How do hMSCs sense the dynamic stiffening/softening of gel substrates? Is it possible to influence the fate of hMSCs by applying periodic mechanical stresses?

  • A substantial majority (~90%) of the hMSCs out of approx. 40 cells cultured on both stiff and soft substrates exhibited positive STRO-1 signals. This is in contrast to the same hMSCs cultured on plastic dishes, where we found the fraction of cells exhibiting positive STRO-1 signals decreased to 15–20% already within 10 d (SI Fig. S6), which agrees well with the previous account[43]

Read more

Summary

Introduction

Various extracellular matrix (ECM) models based on chemically cross-linked hydrogels have been developed in order to understand how such a positive feedback in mechano-sensing regulates the fate of stem and progenitor cells. Fine tuning of the cross-linker concentration and the reaction time[7,8] enables one to control the elastic modulus of a given gel substrate Such “ex situ” regulation of the mechanical microenvironment of cells provides important insight into the vital role of elasticity compliance in optimizing the cell morphology[9,10,11], as well as regulating the migratory behavior[12,13,14], and the differentiation fate of human mesenchymal stem cells (hMSCs)[15,16]. Zemel et al.[18] calculated the nematic order parameters of actomyosin complexes by staining both actin and non-muscle myosin II (NMMII) for hMSCs on polyacrylamide gels, and found that the maximum order parameter correlated directly with the optimal substrate elasticity for muscular tissues These ex situ approaches have a fundamental problem to model dynamic mechanical microenvironments of stem cells[19].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call