Abstract

IntroductionEndothelin (EDN) signalling plays a crucial role in cell differentiation, proliferation and migration processes. There is compelling evidence that altered EDN signalling is involved in carcinogenesis by modulating cell survival and promoting invasiveness. To date, most reports have focused on the oncogenic potential of EDN1 and EDN2, both of which are overexpressed in various tumour entities. Here, we aimed at a first comprehensive analysis on EDN3 expression and its implication in human breast cancer.MethodsEDN3 mRNA expression was assessed by Northern blotting in normal human tissues (n = 9) as well as in matched pairs of normal and tumourous tissues from breast specimens (n = 50). EDN3 mRNA expression in breast cancer was further validated by real-time polymerase chain reaction (PCR) (n = 77). A tissue microarray was used to study EDN3 protein expression in breast carcinoma (n = 150) and normal breast epithelium (n = 44). EDN3 promoter methylation was analysed by methylation-specific PCR in breast cell lines (n = 6) before and after demethylating treatment, normal breast tissues (n = 17) and primary breast carcinomas (n = 128). EDN3 expression and methylation data were statistically correlated with clinical patient characteristics and patient outcome.ResultsLoss of EDN3 mRNA expression in breast cancer, as initially detected by array-based expression profiling, could be confirmed by Northern blot analysis (> 2-fold loss in 96%) and real-time PCR (> 2-fold loss in 78%). Attenuated EDN3 expression in breast carcinoma was also evident at the protein level (45%) in association with adverse patient outcome in univariate (P = 0.022) and multivariate (hazard ratio 2.0; P = 0.025) analyses. Hypermethylation of the EDN3 promoter could be identified as the predominant mechanism leading to gene silencing. Reversion of the epigenetic lock by 5-aza-2'-deoxycytidine and trichostatin A resulted in EDN3 mRNA re-expression in vitro. Furthermore, EDN3 promoter hypermethylation was detected in 70% of primary breast carcinomas with significant association to loss of EDN3 mRNA expression (P = 0.005), whilst normal matched breast tissues revealed no EDN3 promoter methylation.ConclusionsEDN3 is a frequent target of epigenetic inactivation in human breast cancer, potentially contributing to imbalanced EDN signalling commonly found in this disease. The clinical implication supports the view that EDN3, in contrast to EDN1 and EDN2, may act as natural tumour suppressor in the human mammary gland.

Highlights

  • Endothelin (EDN) signalling plays a crucial role in cell differentiation, proliferation and migration processes

  • EDN3 is a frequent target of epigenetic inactivation in human breast cancer, potentially contributing to imbalanced EDN signalling commonly found in this disease

  • The clinical implication supports the view that EDN3, in contrast to EDN1 and EDN2, may act as natural tumour suppressor in the human mammary gland

Read more

Summary

Introduction

Endothelin (EDN) signalling plays a crucial role in cell differentiation, proliferation and migration processes. EDNs are synthesised as large precursor proteins that are post-translationally cleaved to the biologically active 21-amino acid form [3] They are involved in fundamental cellular networks like cell proliferation, migration and differentiation processes [4,5] by interacting with their corresponding cell surface-bound EDN-A (EDNRA) and EDNB (EDNRB) receptors in an autocrine and a paracrine manner [6,7,8]. EDNs are able to transduce the activation of anti-apoptotic signals through phosphatidylinositol-3-kinase and to stimulate neo-angiogenesis through vascular endothelial growth factor signalling [14] These multiple ET-axis pathway implications may explain its various impairments of normal cellular integrity in case of an aberrant shift from balanced to imbalanced EDN signalling

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.