Abstract

The cyclin-dependent kinase inhibitors (CKIs) belong to a group of key cell cycle proteins that regulate important cancer drug targets such as the cyclin/CDK complexes. Gene defects in the INK4A/B CKI tumor suppressor locus are frequently associated with human cancers and we have previously identified similar defects in canine models. Many of the cancer-associated genetic alterations, known to play roles in mammary tumor development and progression, appear similar in humans and dogs. The objectives of this study were to characterize expression defects in the INK4 genes, and the encoded p16 family proteins, in spontaneous canine primary mammary tumors (CMT) as well as in canine malignant melanoma (CML) cell lines to further develop these models of spontaneous cancers. Gene expression profiles and characterization of p16 protein were performed by rtPCR assay and immunoblotting followed by an analysis of relevant sequences with bioinformatics. The INK4 gene family were expressed differentially and the genes encoding the tumor suppressor p16, p14, and p15 proteins were often identified as defective in CMT and CML cell lines. The altered expression profiles for INK4 locus encoded tumor suppressor genes was also confirmed by the identification of similar gene defects in primary canine mammary tumor biopsy specimens which were also comparable to defects found in human breast cancer. These data strongly suggest that defects identified in the INK4 locus in canine cell lines are lesions originating in spontaneous canine cancers and are not the product of selection in culture. These findings further validate canine tumor models for use in developing a clear understanding of the gene defects present and may help identify new therapeutic cancer treatments that restore these tumor suppressor pathways based on precision medicine in canine cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call