Abstract

EphA5 is a member of the Eph receptor tyrosine kinase family, which plays a critical role in the regulation of carcinogenesis. Our previous DNA methylation microarray results suggested that the CpG islands in the EphA5 promoter exhibited higher methylation levels in breast cancer tissues. In this study, we further analyzed EphA5 gene expression profiles, methylation status, and clinical implications in breast cancer. We found that the level of EphA5 mRNA was dramatically decreased in 5 different breast cancer cell lines. After treating the cell lines with 5-aza-2'-deoxycytidine (5-aza-dC, a demethylation agent), the levels of EphA5 mRNA and protein were significantly increased. Bisulfite sequencing and methylation-specific polymerase chain reaction detection showed that decreased expression of EphA5 was associated with its methylation status. We also found a significant correlation (P = .017) between the reduction of EphA5 mRNA levels and aberrant methylation of EphA5 in 31 paired tissue samples. In clinical samples, EphA5 methylation was detected in 64.1% (75/117) of breast tumors and 28.2% (33/117) of paired normal tissues (P < .001), which was associated with higher tumor grade (P = .024), lymph node metastasis (P = .004), and progesterone receptor-negative status (P = .008). Our data indicate that EphA5 might be a potential target for epigenetic silencing in primary breast cancer and a valuable molecular marker for breast cancer carcinogenesis and progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.