Abstract

Dysregulation of cell cycle control is an important mechanism in carcinogenesis. Gene promoter hypermethylation is an alternative mechanism of gene inactivation. We analyzed the methylation status of the tumor suppressor components of the INK4/Rb pathway in mantle cell lymphoma and follicular lymphoma by methylation-specific polymerase chain reaction for p15, p16, p18, and Rb1 in 23 mantle cell lymphoma and 30 follicular lymphoma cases and lymphoma cell lines. The methylation-specific polymerase chain reaction results showed that in mantle cell lymphoma, frequent p16 (82%) but infrequent p15 (8.7%) or Rb1 (17.4%) hypermethylation occurred, with p16 and Rb1 hypermethylation being mutually exclusive (P=.01). In follicular lymphoma, frequent hypermethylation of p15 (36.7%), p16 (56.7%), and Rb1 (43.3%) occurred, with p15 and Rb1 hypermethylation being mutually exclusive (P=.05). Concurrent methylation of p15 and p16 occurred in 26.7% of patients with follicular lymphoma and 8.7% of patients with mantle cell lymphoma. Compared with mantle cell lymphoma, there was more frequent p15 (P=.025) hypermethylation but comparable Rb1 (P=.07) and p16 (P=.07) hypermethylation in follicular lymphoma. In a patient with follicular lymphoma with sequential biopsies, Rb1 was unmethylated and expressed at diagnosis but became methylated and down-regulated at relapse. Moreover, methylation analysis of these 4 genes in an additional 8 patients with grade I follicular lymphoma showed that Rb, but not the other genes, was preferentially methylated in grade II (P=.03). In summary, most patients with mantle cell lymphoma and follicular lymphoma had epigenetic aberrations targeting the INK4/Rb pathway. There is more frequent p16 hypermethylation in mantle cell lymphoma and p15 or Rb1 hypermethylation in follicular lymphoma. The role of Rb methylation in disease or histologic transformation in follicular lymphoma warrants further study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.