Abstract

BackgroundHIV-1 is one of the fastest evolving pathogens, and is distinguished by geographic and genetic variants that have been classified into different subtypes and circulating recombinant forms (CRFs). Early in infection the primary coreceptor is CCR5, but during disease course CXCR4-using HIV-1 populations may emerge. This has been correlated with accelerated disease progression in HIV-1 subtype B. Basic knowledge of HIV-1 coreceptor tropism is important due to the recent introduction of coreceptor antagonists in antiretroviral therapy, and subtype-specific differences regarding how frequently HIV-1 CXCR4-using populations appear in late-stage disease need to be further investigated. To study how frequently CXCR4-using populations appear in late-stage disease among HIV-1 subtype A and CRF02_AG, we evaluated the accuracy of a recombinant virus phenotypic assay for these subtypes, and used it to determine the HIV-1 coreceptor tropism of plasma samples collected during late-stage disease in Guinea-Bissau. We also performed a genotypic analysis and investigated subtype-specific differences in the appearance of CXCR4 tropism late in disease.ResultsWe found that the recombinant virus phenotypic assay accurately predicted HIV-1 coreceptor tropism of subtype A and CRF02_AG. Over the study period (1997-2007), we found an increasing and generally high frequency of CXCR4 tropism (86%) in CRF02_AG. By sequence analysis of the V3 region of our samples we developed a novel genotypic rule for predicting CXCR4 tropism in CRF02_AG, based on the combined criteria of the total number of charged amino acids and net charge. This rule had higher sensitivity than previously described genotypic rules and may be useful for development of future genotypic tools for this CRF. Finally, we conducted a literature analysis, combining data of 498 individuals in late-stage disease, and found high amounts of CXCR4 tropism for all major HIV-1 subtypes (60-77%), except for subtype C (15%).ConclusionsThe increase in CXCR4 tropism over time suggests an evolving epidemic of CRF02_AG. The results of the literature analysis demonstrate the need for further studies investigating subtype-specific emergence for CXCR4-tropism; this may be particularly important due to the introduction of CCR5-antagonists in HIV treatment regimens.

Highlights

  • Human immunodeficiency virus type 1 (HIV-1) is one of the fastest evolving pathogens, and is distinguished by geographic and genetic variants that have been classified into different subtypes and circulating recombinant forms (CRFs)

  • Different HIV strains have been classified based on coreceptor tropism: CCR5-tropic strains are referred to as R5, CXCR4-tropic strains as X4, and dual tropic strains as R5X4 [2]

  • In this study, we show that the V1-V3 region of the HIV-1 envelope is the major determinant for coreceptor tropism for subtype A and CRF02_AG, and that the Tropism Recombinant Test (TRT) assay accurately determines coreceptor tropism for these subtypes [29]

Read more

Summary

Introduction

HIV-1 is one of the fastest evolving pathogens, and is distinguished by geographic and genetic variants that have been classified into different subtypes and circulating recombinant forms (CRFs). Human immunodeficiency virus type 1 (HIV-1) evolves at an extremely high rate, primarily due to a combination of high viral turn-over, an error prone viral reverse transcriptase and frequent recombination. This high level of molecular evolution has led to diversification of HIV-1 into genetically distinct subtypes (A-D, F-H, J-K), subsubtypes (A1-A3, F1-F2) and circulating recombinants forms (CRFs), usually defined by geographical location [1]. In subtype B, R5 populations are generally present over the entire course of infection whereas R5X4 or X4 populations emerge late in infection This coreceptor switch has been associated with faster CD4+ T cell decline and the development of AIDS, studies describing the opposite, or no difference in CD4+ T cell decline have been observed [5,6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call