Abstract

Alternative splicing can produce variant proteins and expression patterns as different as the products of different genes, yet the prevalence of alternative splicing has not been quantified. Here the spliced alignment algorithm was used to make a first inventory of exon-intron structures of known human genes using EST contigs from the TIGR Human Gene Index. The results on any one gene may be incomplete and will require verification, yet the overall trends are significant. Evidence of alternative splicing was shown in 35% of genes and the majority of splicing events occurred in 5' untranslated regions, suggesting wide occurrence of alternative regulation. Most of the alternative splices of coding regions generated additional protein domains rather than alternating domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.