Abstract

A frequency-swept ultrasonic beam was focused into a biological tissue sample to modulate the laser light passing through the ultrasonic beam inside the tissue. Parallel detection of the speckle field formed by the transmitted laser light was implemented with the source-synchronous-illumination lock-in technique to improve the signal-to-noise ratio. The ultrasound-modulated laser light reflects the local optical and mechanical properties in the ultrasonic beam and can be used for tomographic imaging of the tissue. Sweeping the ultrasonic frequency provides spatial resolution along the ultrasonic axis, which is scalable with the frequency span of the sweep. Two-dimensional images of biological tissue with buried objects were successfully obtained experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call