Abstract

Nonradiative wireless power transfer (WPT) technology has made considerable progress with the application of the parity-time (PT) symmetry concept. In this Letter, we extend the standard second-order PT-symmetric Hamiltonian to a high-order symmetric tridiagonal pseudo-Hermitian Hamiltonian, relaxing the limitation of multisource/multiload systems based on non-Hermitian physics. We propose a three-mode pseudo-Hermitian dual-transmitter-single-receiver circuit and demonstrate that robust efficiency and stable frequency WPT can be attained despite the absence of PT symmetry. In addition, no active tuning is required when the coupling coefficient between the intermediate transmitter and the receiver is changed. The application of pseudo-Hermitian theory to classical circuit systems opens up an avenue for expanding the application of coupled multicoil systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.