Abstract

For the light source of the gravitational wave detector, the injection-locked Nd:YAG laser has been developed in which high power with high frequency stability is required. The frequency of the injection-locked laser is stabilized to the high- finesse Fabry-Perot optical resonator to suppress frequency noise down to 2 X 10-2 Hz/(root)Hz at 1 kHz. To improve the long term frequency-stability, the frequency of the injection-locked laser is locked to both the high-finesse Fabry-Perot cavity and to the hyperfine components of the rovibrational transition of 127I2 simultaneously by the offset-locking technique. The frequency drift of the high- finesse Fabry-Perot cavity is estimated which is measured from the frequency difference between Fabry-Perot resonate frequency and iodine transition frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.