Abstract

The effects of chip load, tool wear, and tool eccentricity on milling force are similar; in order to distinguish them from each other, the spectral characteristics of milling force for four flute end mills was studied. With simplified milling force model, the calculation expression of instantaneous milling force under tool eccentricity was derived based on the 2D geometry of tool cutting into workpiece. Using simulation methods, the amplitude spectra of milling forces under neither wear nor eccentricity, only eccentricity, both wear and eccentricity, and the every phase spectrum of force caused only by wear of one tooth were analyzed. The analysis results showed that the basic and third harmonic amplitudes of spindle frequency were linear only with eccentric distance, the fourth harmonic amplitude was linear only with feed, the second harmonic component was in relationship only with tool wear, and harmonics with same frequency caused by wear of different teeth were in phase or out of phase. Then corresponding milling experiments were done, the relations between experimental harmonic amplitudes of force and milling parameters were analyzed, and were found being in good agreement with above simulation results. These indicate that amplitudes of these harmonics could be taken as indices in recognizing eccentricity, wear, and chip load, respectively, and their variations contain in-process information of tool wear. This study proposes a new idea of identifying tool eccentricity and wear with force itself.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call