Abstract

Adolescent-onset schizophrenia (AOS) is a severe neuropsychiatric disease associated with frequency-specific abnormalities across distributed neural systems in a slow rhythm. Recently, functional magnetic resonance imaging (fMRI) studies have determined that the global signal. (GS) is an important source of the local neuronal activity in 0.01-0.1Hz frequency band. However, it remains unknown whether the effects follow a specific spatially preferential pattern in different frequency bands in schizophrenia. To address this issue, resting-state fMRI data from 39 drug-naïve AOS patients and 31 healthy controls (HCs) were used to assess the changes in GS topography patterns in the slow-4 (0.027-0.073Hz) and slow-5 bands (0.01-0.027Hz). Results revealed that GS mainly affects the default mode network (DMN) in slow-4 and sensory regions in the slow-5 band respectively, and GS has a stronger driving effect in the slow-5 band. Moreover, significant frequency-by-group interaction was observed in the frontoparietal network. Compared with HCs, patients with AOS exhibited altered GS topography mainly located in the DMN. Our findings demonstrated that the influence of the GS on brain networks altered in a frequency-specific way in schizophrenia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call