Abstract

Ultrasound excited thermography allows for defect selective imaging using thermal waves that are generated by elastic waves. The mechanism involved is local friction or hysteresis which turns a dynamically loaded defect into a heat source which is identified by a thermography system. If the excitation frequency matches to a resonance of the vibrating system, temperature patterns can occur that are caused by standing elastic waves. This undesirable patterns can affect the detection of damages in a negative way. We describe a technique how the defect detectability of ultrasound activated thermography can be improved. With the objective of a preferably diffuse distributed sonic field we applied frequency modulated ultrasound to the material. That way the standing waves can be eliminated or reduced and the detectability is improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call